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1. INTRODUCTION

This program is part of the first phase of a two-phase evaluation of ARALL® lami-
nates. This part of the first phase evaluated the effects low velocity impacts have on the
compressive properties of ARALL® laminates. ARALL® laminates are a trademark of the
ALCOA Corporation.

ARALL® laminates are an attempt to develop a material exploiting the fatigue
advantages of composites and the impact and compression advantages of metals. This
material is currently made of three layers of aluminum bonded together by two plies of
unidirectional aramid fibers in an adhesive matrix. A series of test programs are being run

to determine the properties of these ARALL® laminates.

Since ARALL® laminates exhibit characteristics of both composites and metals, both
metal and composite tests were conducted on ARALL® laminates during this test program.
One of the composite tests was the Compression After Impact test. This test provides a
relative ranking for composite damage tolerance. It is not a standard test as of this time, but
many composite manufacturers and users are using this test to evaluate composite dam-

age tolerance. A description of the test can be found in NASA RP 1142 (Ref. 1).




2. MATERIALS AND SPECIMENS

The specimens tested were the first generation of ARALL® laminates designated
ARALL®-1. The ARALL®-1 [aminates are three plys of aluminum interleaved with two plies
of unidiiectional epoxy impregnated aramid fiber as shown in Figure 2-1. ALCOA fabricated
the laminates. The aramid fiber is a product of Enka called Twaron®. The aluminum used is

7075. The epoxy resin is a 3M product, AF-163-2.

NOm,
0.053.in.

TOT8.T6
{0.012-in. thX.)

Acamid/Epcxy

Fig. 2-1: Schematic Lay-up of ARALL®-1.

ALCOA provided 10 specimens which were 10 inches (254 mm) long and 5 inches
(127 mm) wide. Figure 2-2 shows the specimens with the impact point and support ring
inside diameter noted. The specimens were modified from the NASA RP 1142 (Ref. 1) in
that they were fabricated to be 5 inches (127 mm) wide instead of 7 inches (177.8 mm)
wide and then machined to 5 inches (127 mm) wide after the impact testing. This saved on

machining costs and time between impact and compression testing.




Compression After Impact

Specimen
ARALL®1

5"
(127mm)
!

Fiber __|
Direction

(127mm)

2.5"
(63.5mm)

Specimen Support
I.D. = 3.937" (100
mm)

Thickness = 0.053"
(1.346 mm)

Fig. 2-2: The Modified Compression After Impact Specimen.




3. TEST PROCEDURES

The Compression After Impact (CAl) test is a commonly used test procedure to
determine the d~-.age tolerance of composite materials. NASA documented this test as a
standard (Ref. 1) as have other materials suppliers and users. Contrary to popular belief,
the compression after impact test is actually two tests: an impact test followed by a com-
pression test of the impact damaged specimen. The test gives a relative ranking of how

well a material survives an impact.

While previous impact work was done on the impact properties of ARALL®-1 lami-
nates at NASA (Ret. 2), this current investigation went further. The NASA work looked only
at uninstrumented impact while this work looked at the residual compressive properties of

ARALL®-1 laminates after impact.

3.1. IMPACT TESTING

A typical Compression After Impact test usually involves an uninstrumented drop
tower type impactor and a square clamped support. Reviewing the work of Sjéblom , Refer-
ence 3, and Sjoblom, Hartness, and Cordell, Reference 4, indicated more information
could be obtained with an instrumented impactor, and the problems involved with second-
ary impacts could be eliminated by a pendulum impactor. Simple support in a ring geometry
would lessen the amount of edge effects and make setup time quicker than the square

clamped frame.

Each specimen received an impact from a pendulum type impact apparatus (Figure
3-1). The impact target was located in the center of the specimen 5 inches (127 mm) along

the 10 inch (254 mm) dimension and 2.5 inches (63.5 mm) along the 5 inch (127 mm)

dimension
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Fig. 3-1: Schematic of the Impact Test Apparatus.

The area impacted was simply supported on a 3.937 inch (100mm) inside diameter
ring. The inside diameter of the ring contained a machined radius to minimize edge etfects.
This type of support was chosen because of the large database available in the Materials

Directorate on impacted composite materials using the ring support.

The impactor used was a 1/2-inch (12.7 mm)-diameter hemispherical tup connected
to a Dynatup 8496-1 load cell with additional weights so that the total apparatus had a
mass of 17.871 pounds (8.987 kg). The load cell is connected to a Nicolet 2090 digital
oscilloscope via a Vishay 2310 strain gauge conditioner unit. A timing flag on the impactor

triggers photocells 1 inch (25.4 mm) apart for velocity measurement.

A drop height is calculated to achieve the desired impact energy level. Just before
impact, the photoceli timing gate measures the incoming velocity. While the impactor con-
tacts the specimen, the load cell voltage is recorded by the Nicolet digital oscilloscope as a
function of time. When the impactor rebounds, it passes through the timing gate measuring

the rebound velocity.

From the digital oscilloscope plot and the incoming and out-going velocities, force

vs. time, force vs. displacement, and the energy lost during the impact are calculated. After




the impact, the damage areas were “C”"-scanned and compared with “C"-scans taken
before the impact to determine the extent of damage. These “C"-scan areas are shown in
the odd-numbered Apendix figures A-17 thru A-31. All "C"-scans were done by UTC con-

tractors at the Materials Directorate Systems Support Division facility.

3.2. COMPRESSION TESTING

After the impact testing, each specimen was strain gauged with three pairs of front to
back strain gauges (six gauges total). As shown in Figure 3-2, two strain gauge pairs were
placed 1 inch (25.4 mm) away from the center of the specimen: one pair directly to the
right, and one pair directly to the left of the impact area. The third strain gauge pair went
directly above the center of the specimens. All the strain gauges were placed well away

from the damaged area.

Compression After Impact

Specimen Strain Gauge Positions
ARALL® 1

..>| 5" (127mm) |< >| 5" (127mm) '4

_>l 25"

impact side Back Side

Fig. 3-2: Specimen Strain Gauge Positions.




When strain gauging was completed, each specimen was placed in a modified
Boeing Compression Fixture shown in Figure 3-3. This fixture and its modifications are

discussed by Manieri and Harmsworth (Ref. 5).

The strain gauges were attached to a Micromeasurements MM4000/Hewlett-
Packard strain measuring system. The specimen and fixture was aligned and the strains

measured by the system during each test.

Each specimen was loaded in a Tinius Olsen Universal test machine. A load rate of
0.05 inch (.127 mm) per minute was used. The load was increased until a continuous drop

in load was observed. Loads, strains, and ultimate load were recorded for each test.

After the testing was completed, additional “C”-scans were taken to see if the im-
pact-caused-damage had grown because of the compressive loading. These “C"™-scan

areas are shown in the even-numbered Apendix figures A-18 thru A-32.

Fig. 3-3: The Modified Boeing Compression After impact Fixture.




4. TEST RESULTS AND DISCUSSION
4.1. IMPACT RESULTS

Eight of the specimens received impacts ranging from 2.35 ft-lbs (3.19 J) to 11.71t-

Ibs (15.4 J). Two impacts were done for each energy level.

As the impactor's energy is imparted to the specimen, the impactor slows down
untii all the kinetic energy is transferred to the specimen and the frame. This is usually at
the point of the highest load. Some of this energy causes the impactor to rebound in the
opposite direction. The difference between the impact and the rebound energy is the
amount of energy absorbed by the specimen by damage and vibration. The energy levels

reported herein are the maximum values which occur very close to the maximum load.

The impact fixture will also absorb some energy by vibration. However, since the

fixture and support are so stift and massive, this is negligible.

Impacts at 2.35 and 2.385 ft-Ibs (3.19 & 3.23 J) only dented the specimens
(Apendix figures A-1 to A-4). At this energy level, the “C"-scan detected a small amount of
interior damage (Apendix figures A-17 and A-19). The force versus time curves, shown in
Figures 4-1 and 4-2, were smooth and symmetrical. Energy versus time curves show a
maximum energy at the maximum force. A final energy as the force curves returned to zero
show 30 percent of the energy was imparted to the specimens and fixture. The first data
points of the impact were missed by the oscilloscope because the trigger level was set too

high. This mistake caused the force versus displacement curves to be inaccurate.
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Time {sac*10™

Fig. 4-1: Force and Energy vs. Time Plot for Specimen A3.
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Fig. 4-2: Force and Energy vs. Time Plots for Specimen A4.
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At 5.45 ft-Ibs (7.44 J) and 5.54 ft-Ibs (7.51 J), back face cracks appeared (Appendix
figures A-5 to A-8). The cracks were oriented 90 degrees to the aramid fiber direction. This
crack orientation can be explained by the stretching of the material during processing.

Interior damage stayed within the boundaries of the dent.

The force versus time curves show jagged or sudden drops in
impact load just before the maximum impact load. These drops or vibrations damped out
before the maximum impact load. Again, the maximum impact force coincided with the
maximum impact energy. At the end of the impact event, a final energy absorbed by the

specimens and/or impact fixture was around 55 percent (Figures 4-3 and 4-4).

SPECIMEN #A5

5.539 FT.LBS, HASS = 17.87 1LBS

B00 <
-
&
g $
2 &
e i
00 .o 8
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[
E

00

300 y t g S s S  S———
] 2 ] 4 E i) " 14
Time {poo*10%

Fig. 4-3: Force and Energy vs. Time for Specimen A5
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SPECIMEN #As8

5488 FT-LBS, MASS = 17.87 LBS
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o L L] ] & L £ 1 <
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Fig. 4-4: Force and Energy vs. Time for Specimen A6

Force verses displacement curves also show the damage behavior previously de-
scribed (Figures 4-5 and 4-6). Johnson (Ref. 2) related similar jags or sudden drops in load

to delamination of the aramid/adhesive layers from the aluminum layers in static indentation

load tests.

There is no quantitative way of relating the drops in load to delamination in the
impact testing. The impact event happens too fast to relate the drops or vibrations in impact

load to damage of the panel because of impact.

Unfortunately, the initial data from the less damaged specimens wasn't picked up by

the Nicolet, so no comparison can be made between the two energy levels.

11
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Fig. 4-5: Force vs. Calculated Displacement for Specimen A5
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Fig. 4-6: Force vs. Calculated Displacement for Specimen A6.
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The ARALL®-1 laminates impacted at above 10 ft-lbs (13 J) were penetrated. Penetration
is defined as the imbedding of the impactor nose or “tup” in the impact specimen so that the
impactor cannot rebound back through the timing gate. At 10.31 ft-lbs (14.00 J), the
ARALL®-1 laminate was totally penetrated. Specimens A-7 through A-10 received impacts
at 10.31 ft-lbs (14.00 J), 10.45 ft-lbs (14.20 J), 11.69 ft-lbs (15.8 J), and 11.7 ft-lbs (15.9 J).
All four specimens were penetrated at these impact energy levels (Apendix figures A-9 and
A-16).

At these impact energy levels, force versus time curves show gradual increase in
load until a sudden drop. This drop indicates an interior failure such as a crack or delamina-
tion. Though the load may increase, the surrounding material will continue to carry the load
until the crack grows or the failure of the surrounding material occurs. The energy versus
time curves always increase with the maximum impact force occurring at the same time as
the slope of the energy versus time curve starts to decrease. The final energy absorbed by

the specimen is 100 percent.

As the specimen is penetrated, the impact load drops off. This is shown by a steep
drop in the impact force curve and a corresponding sudden slope change in the impact

energy curve that was not shown in the lower impact energies (Figures 4-7 to 4-10).

13
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Fig. 4-7: Force and Energy vs. Time for Specimen A7.
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Fig. 4-10: Force and Energy vs. Time for Specimen A10.
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On comparison with Graphite/Epoxy composites, the ARALL®-1 laminates lose

less load during the cracking. The aluminum seems to be acting as an energy absorber,

plastically absorbing energy.

Figure 4-11 shows the energy lost to the specimen and fixture through vibration or

damage versus impact energy. Several other materials are shown for comparison such as

graphite/epoxy (Ref. 5) and fiberglass sheet molding compound, a random oriented fiber-

glass impregnated polyester resin (Ref. 6). According to these data, Arali®-1 laminates

require less impact energy than the graphite/epoxy or the SMC to cause the same energy

absorption. Howevaer, if the impact energy is normalized by the specimen thickness, as in

Figure 4-12, ARALL®-1 laminates require more energy per specimen thickness for the

same amount of energy absorption.
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Fig. 4-11: Energy Absorbed vs. Impact Energy.
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Fig. 4-12: Energy Absorbed vs. Normalized Impact Energy.
Figure 4-13 plots normalized impact damage area as measured by “C" scan damage

area versus normalized impact energy for ARALL®-1 (odd-numbered Appendix figures A-
17 thru A-31), graphite/epoxy, and fiberglass SMC. ARALL®-1 requires more energy to
cause equivalent damage compared to the other two materials for normalized impact ener-

gies greater than 100 ft-Ibs/in.
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Fig. 4-13: Normalized Damage Area vs. Normalized Impact Energy.

However, the ARALL®-1 laminates are penetrated at 10 ft-Ibs (13.56 J),shown in

Appendix figures A-9 thru A-16, as compared with over 40 ft-lbs (54.2 J) for graphite/epoxy
and 25 ft-lbs (33.9 J) for fiberglass SMC.

Table 4-1 summarizes the impact test results. In this table, Eyj is the impact energy,

and Ejogs is the percent energy absorbed by the specimen.

TABLE 4-1
Specimen Tup Mass Vin Eki Eloss impact Damage
# Diameter Force Area .

{in.) (ibs) (fs) {ft-lbs) {%) (Ibs) (in2)
A3 0.5 17.87 291 235 30.6 440 0.173
A4 0.5 17.87 293 239 313 445 0.15
A5 0.5 17.87 4.47 5.54 57 560 0.442
A6 0.5 17.87 445 5.49 549 540 0.399
A7 0.5 17.87 6.14 10.45 100 590 0.994
A8 0.5 17.87 6.1 10.31 100 600 0.939
A9 05 17.87 6.5 11.69 100 600 1.227
A10 0.5 17.87 6.49 11.7 100 610 0.932

ARALL®-1 IMPACT RESULTS
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4.2. COMPRESSION RESULTS

The compression loading of the specimens showed there was no real dropoff in
compressicn strength after the impact. Unfortunately, the specimens were so thin, even the
undamaged samples buckled around 5000 psi (34.4 MPa), and many of the impacted
specimens started to buckle upon application of load. This is shown by the stress-strain
diagrams, Figures 4-14 through 4-23. They failed similarly to aluminum and steel speri-

mens in that the buckling occurred in the top half of the specimen (Ref. 5).

An initial modulus calculated from the average of the six gauges on the undamaged
panels showed an average initial compression modulus of 11.2 MSI. This value is taken
from just before the onset of buckling whiie all the back-to-back strain gauge pairs were
tracking each other . Goodyear and Chellman reported a modulus of 10.7 MSI for ARALL®-
1in the L direction (Ref. 7).

Table 4-2 is a tabulation of the strain gauge readings, the compressive stress, and

the calculated initial moduli for A1 & A2.

Table 4-2
Stress Modulus @Gauge #(MS1) AVE
Specimen (PS1) #1 #2 #3 #4 #5 #6 (MSI)
Al -4064.15 12.1 11.8 16 8.76 9.03 7.49 10.8
A2 -4116.98 11.8 14.2 10.6 11 9.64 125 11.6

INITIAL MODULI FOR UNDAMAGED SPECIMENS
Manieri reported a Young's Modulus of 8.9 Msi for undamaged graphite/epoxy

composites using the same modified compression after impact fixture (Ref. 5). This com-
pared well with numerical analysis which gave a Young’s Moduius of 9.31 Msi. Standard
composite compression tests, ASTM D695 and ASTM D3410, gave average Young's
Moduli of 7.7 Msi and 7.3 Msi, respectively.
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Fig. 4-14: Stress-Strain Curves for Specimen A1.
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Fig. 4-15: Stress-Strain Curves for Specimen A2.
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Fig. 4-16: Stress-Strain Curves for Specimen A3.
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Fig. 4-17: Stress-Strain Curves for Specimen A4.
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Fig. 4-18: Stress-Strain Curves for Specimen A5.
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Fig. 4-19: Stress-Strain Curves for Specimen A6.
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Fig. 4-20: Stress-Strain Curves for Specimen A7.
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Fig. 4-21: Stress-Strain Curves for Specimen A8
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Fig. 4-22: Stress-Strain Curves for Specimen A9.
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Fig. 4-23: Stress-Strain Curves for Specimen A10.
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in a good compression failure, the back-to-back strain gauges track each other.
They diverge when the impact induced damage starts to grow or buckling commences.

If the back-to-back strain gauges do not track each other, the specimen has unequal
loading. Additionally, thin specimens have a much lower buckling load. This lower load
allows global buckling of the specimen before the damaged regions have a chance to
initiate specimen failure. Manieri and Harmsworth documented this effect in Graphite/Epoxy

composites (Ref. 5).

The compression after impact fixture is designed to “force” the failure to initiate in the
damaged section of the specimen. If the damaged section does not initiate the failure, the
specimen will fail at a point of stress concentration such as the constrained ends or in a

noncompression mode such as buckling.

The undamaged specimens started buckling at around 5500 psi. The specimens
damaged at 2.4 ft-lbs started buckling at around 3000 psi. Above 5 ft-Ibs, the panels started
buckling aimost with the initial application of load. In all of the tests, the gauges to the sides
of the impact areas and on the same side (#1 & #3 or #4 & #6) tracked each other well after
buckling initiation. This indicates the lack of true compression in our specimen in this com-
pression fixture. The most likely explanation seems to be the thickness of the specimens.
The wide divergence in stress-strain readings made calculating an average modulus for the

impacted specimens guesswork.

All the specimens were loaded up until they started to deform and would not carry
any more load. Two specimens redistributed the load (Figures 4-14 and 4-22). These
eftects are considered to be fixture dependent since they happened in both the damaged

and the undamaged specimens.
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Fig. 4-24: Compression After Impact Strength vs. impact Energy.
Figure 4-24 illustrates buckling initiation load with increasing impact energy. Also

graphed are the compression-after-impact (CAl) strengths of graphite/epoxy and fiberglass

SMC for comparison.

Comparing the Compression After Impact Behavior of ARALL® laminates with that
of graphite epoxy composites, and fiberglass SMC composites is difficult because of the
different failure mechanisms. The ARALL®-1 laminates fail by global buckling followed by
yielding of the specimen. SMC and graphite epoxy fail due to local buckiing of the damaged
area of the specimen which initiates unstable delamination growth. This type of failure

occurs at higher compressive loads than global buckling.

Table 4-3 shows the Compression After Impact data for ARALL®-1 laminates.

Specimens A5, A6, and A9 buckled almost immediately upon application of compression

load.
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Table 4-3

Impact Buckling Buckling Initial
Specimen Energy Load Stress Modulus
# (ft-los) {Ibs) (psi) (msi)
Al 0 -1473 -5558 10.9
A2 0 -1482 -5592 11.6
A3 2.35 -733 -2776 15.3
A4 2.39 -850 -3207 13.2
A5 5.54 0 0 18.3
A6 5.49 0 0 12.4
A7 10.45 -286 -1079 17
A8 10.31 -256 -966 1.66
A9 11.69 0 0 251
A10 11.7 -227 -856 2.02

COMPRESSION AFTER IMPACT RESULTS
ARALL®-1 jaminates lose about half their compressive buckling load owing to im-
pact energies of about 2 ft-Ibs. At impact energies of 5ft-Ibs and greater, the ARALL®-1

laminates start buckling almost immediately.
“C"-scans taken of the specimens after testing show no growth of any of the dam-

aged areas. This indicates the damaged area was not the initiation point of these specimen

failures. Compression buckling failure occured because of the thinness of the samples.
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5. CONCLUSIONS

During low velocity impact, ARALL®-1 laminates dent like metals as opposed to

delaminating like composites. This is indicative of plastic deformation.

During impact, ARALL®-1 laminates don't vibrate as much as layered composites.
Sheet Molding Compound, which has randomly oriented reinforcement, also exhibits this

behavior. This may be based on “isotropic” properties or specimen géometry effects.

Above 2.5 ft-Ibs, ARALL®-1 laminates show cracks on the back face side of the
laminate. The cracks run perpendicular to the fiber direction. This may due to residual

stresses caused by the stretching operation.

Specimens A5 and A6 show an increase of vibration before a maximum impact
force. This indicates damage and delamination growth. In composites, this dropoff is sud-
den and larger. The increasing vibration is either matrix cracking or separation of the adhe-

sive from the aluminum.

As the “C"scans show, any impact damage is restricted to the immediate dent area
or within 1/4 inch of the penetration. Comparable damage would be much greater in an

organic matrix composite.

A threshold of penetration for this thickness of ARALL®-1 appears to be between 5
and 10 ft-Ibs. Fibers aren’t broken through until at least 10 ft-lbs.

Compressive buckling was achieved in the modified Boeing Compression fixture for
the thickness of the ARALL®-1 material. The buckling load for the specimens was reduced

by increasing impact energy levels.
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6. RECOMMENDATIONS

A thicker ARALL®-1 laminate should be used for any more follow-on work. This will
increase the likelihood of getting compression failures in the modified Boeing Compression

fixture.

Thin ARALL®-1 laminates handle low velocity impacts by denting, a metal like be-

havior. This makes them good candidates for impact areas like lower aircraft skins.
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Appendix

A.1. Specimen Photographs

Fig. A-1: Impact Side of Specimen A3, 2.35 ft-Ibs (3.19 J).

Fig. A-2: Backface Side of Specimen A3, 2.35 ft-Ibs (3.19J).
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Fig. A-3: Impact side of Speciemen A4, 2.29 ft-ibs (3.23 J).

Fig. A-4: Back Side of Specimen A4, 2.29 ft-Ibs (3.23 J).
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Fig. A-5: Impact Side of Specimen AS5, 5.54 ft-Ibs (7.51 J).

Fig. A-6: Back side of Specimen A5, 5.54 ft-Ibs (7.51 J).
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Fig. A-7: Impact Side of Specimen A6, 5.49 ft-lbs (7.44J).

Fig. A-8: Backside of Specimen A6, 5.49 ft-Ibs (7.44 J).
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Fig. A-9: Impact Side of Specimen A7,10.45 ft-Ibs (1 4.2J).

Fig. A-10: Back Side of Specimen A7, 10.45 ft-lbs (1 4.2 J).
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Fig. A-11: impact side of Specimen A8, 10.31 ft-lbs (14 J).

Fig. A-12: Back Side of Specimen A8, 10.31 ft-ibs (14 J).
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Fig. A-13: Impact side of Specimen A9, 11.69 ft-lbs (15.8 J).
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Fig. A-14: Back Side of Specimen A9, 11.69 ft-lbs (15.8 J).
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Fig. A-15: Impact Side of Specimen A10, 11.7 ft-Ibs (15.9 J).

Fig. A-16: Back Side of Specimen A10, 11.7 ft-lbs (15.9 J).
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A.2. “C” Scans of Damage Areas
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Fig. A-17: “C” Scan of Specimen A3, 2.35 ft-ib Impact.

Fig. A-18: “C” Scan of Specimen A3 After Compression Loading.
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Fig. A-20: “C” Scan of Specimen A4 After Compression Loading.
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Fig. A-21: “C” Scan of Specimen A5, 5.54 ft-Ib Impact.

Fig. A-22: “C” Scan of Specimen A5 After Compression Loading.
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Fig. A-23: “C” Scan of Specimen A6, 5.49 ft-Ib Impact.
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Fig. A-24: “C” Scan of Specimen A6 After Compression Loading.
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Fig. A-25: “C” Scan of Specimen A7, 10.45 ft-Ib Impact.

Fig. A-26: “C” Scan of Specimen A7 After Compression Loading.

43




YR

[E RN B

BRYE]

MBS ek 14 Bageis 0 0WPN- b b L O be i Bt -

Fig. A-27: “C” Scan of Specimen A8, 10.31 ft-Ib Impact.

Fig. A-28: “C” Scan of Specimen A8 After Compression Loading.
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Fig. A-29: “C” Scan of Specimen A9, 11.69 ft-lb Impact.
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Fig. A-30: “C” Scan of Specimen A9 After Compression Loading.
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Fig. A-31: “C” Scan of Specimen A10, 11.7 ft-ib Impact.
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Fig. A-32: “C” Scan of Specimen A10 After Compression Loading.
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